Sains Malaysiana 52(9)(2023): 2673-2688

http://doi.org/10.17576/jsm-2023-5209-16

 

Human Mesenchymal Stem Cell Derived from Bone Marrow and Umbilical Cord Display Anti-Cancer Activity in Cancer Cell Lines in vitro

(Sel Stem Mesenkima Manusia Diambil daripada Sum-sum Tulang dan Tali Pusat menunjukkan Aktiviti Anti-Kanser dalam Titisan Sel Kanser secara in vitro)

 

NOOR ATIQAH FAKHARUZI, MOON NIAN LIM, ZUHAIRI ABDUL RAHMAN, NURUL AIN NASIM MOHD YUSOF, EZALIA ESA & KAMAL SHAIK FAKIRUDDIN*

 

Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), 40170 Shah Alam, Selangor, Malaysia

 

Received: 17 October 2022/Accepted: 5 September 2023

 

Abstract

The anti-tumour efficacy of engineered mesenchymal stem cell (MSCs) in cancers have been well documented by several reports. However, the impact of MSCs on the pathogenesis of solid cancers remains elusive. The study aims to elucidate the role of MSCs from bone marrow (BMMSCs) and umbilical cord (UCMSCs) on the proliferation, apoptosis and clonogenicity of cancer cell including H2170 (squamous cell carcinoma), LN18 (glioblastoma) and MCF7 (breast cancer) in vitro. Highest concentration of conditioned medium derived from the UCMSCs was significantly (p<0.001) effective to inhibit the proliferation of H2170 (25.8 ± 3.5%), LN18 (17.6 ± 6.5%) and MCF7 (33.2 ± 6.8%) as compared to 100% viability in basal. Both MSCs and its conditioned medium were able to significantly (p<0.001) induce apoptosis (early and late) to the H2170 and LN18 cells. However, for MCF7 cells, co-cultured with both MSCs had higher impact on the apoptosis as compared to their condition medium. Furthermore, conditioned medium from UCMSCs were able to significantly reduced the number of colonies in H2170 (609.5 ± 4.9) and LN18 (171.3 ± 12.6) as compared to control (H2170; 1196.3 ±12.8 and LN18; 253.3 ± 12.3), suggesting that these two cancer cells are sensitive to the MSCs. Notably, by co-culturing of all three cancer cell lines with the MSCs’ conditioned medium, we found that  there was an increased expression of more than two-fold in BAX, BAD, and APAF1 genes showing the ability of MSCs’ conditioned medium to induce the intrinsic apoptosis pathway in the cancer cells. Collectively, our findings demonstrated that the MSCs could induce apoptosis and inhibit both H2170 and LN18 cancer cell proliferation. Furthermore, this study did not find evidence of MSCs in enhancing tumorigenic characteristics of these cancer cells, and thus we postulate that MSCs are basically safe as a cell-based therapy in cancer treatment.

 

Keywords: Anti-cancer; cancer cell lines; in vitro; mesenchymal stem cell

 

Abstrak

Efikasi kejuruteraan sel stem mesenkima (MSC) dalam menangani beberapa jenis kanser telah pun dilaporkan. Namun demikian, impak MSC terhadap patogenesis kanser pepejal masih kurang diketahui. Kajian ini bertujuan untuk menjelaskan peranan MSC daripada sum-sum tulang (BMMSC) dan tali pusat (UCMSC) terhadap pertumbuhan, apoptosis dan fungsi klonogenisiti sel kanser H2170 (karsinoma sel skuamosa), LN18 (glioblastoma) dan MCF 7 (kanser payudara). Media pertumbuhan berpekatan tertinggi yang diperoleh daripada  UCMSC adalah berkesan (p<0.001) untuk menghalang pertumbuhan sel H2170 (25.8 ± 3.5%), LN18 (17.6 ± 6.5%) dan MCF7 (33.2 ± 6.8%) apabila dibandingkan dengan 100% keviabelan asas. Kedua-dua BMMSC dan UCMSC serta media pertumbuhan mereka mendorong apoptosis (peringkat awal dan akhir) bererti (p<0.001) terhadap sel-sel H2170 dan LN18. Walau bagaimanapun, bagi sel-sel MCF7, pengkulturan bersama kedua-dua MSC menunjukkan kesan apoptosis yang lebih tinggi berbanding dengan media pertumbuhan mereka. Selain itu, media pertumbuhan daripada UCMSC nyata dapat mengurangkan bilangan koloni sel H2170 (609.5 ± 4.9) dan LN18 (171.3 ± 12.6) berbanding dengan kawalan (H2170; 1196.3 ±12.8 dan LN18; 253.3 ± 12.3), mencadangkan bahawa kedua-dua sel kanser adalah sensitif terhadap MSC. Secara ketara, kami mendapati bahawa pengkulturan ketiga-tiga titisan sel kanser tersebut bersama dengan media pertumbuhan MSC dapat meninggikan lebih dua kali ganda eskpresi gen BAX, BAD dan APAF1, menunjukkan bahawa media pertumbuhan MSC dapat mendorong laluan apoptosis intrinsik pada sel kanser tersebut. Secara keseluruhan, kajian ini telah menunjukkan bahawa MSC dapat mendorong apoptosis dan menyekat pertumbuhan sel kanser H2170 dan LN18. Di samping itu, kajian ini tidak menunjukkan bahawa MSC meningkatkan ciri tumorigenik pada sel kanser, maka kami mempostulatkan bahawa MSC adalah selamat bagi terapi berasaskan sel bagi rawatan kanser.

 

Kata kunci: Anti-kanser; in vitro; sel kanser; sel stem mesenkima

 

References

Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C.K. & Chaudhry, G.R. 2019. Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine 13(9): 1738-1755. https://doi.org/10.1002/term.2914

Chang, D., Fan, T., Gao, S., Jin, Y., Zhang, M. & Ono, M. 2021. Application of mesenchymal stem cell sheet to treatment of ischemic heart  disease. Stem Cell Research & Therapy 12: 384. https://doi.org/10.1186/s13287-021-02451-1

Chen, J., Ji, T., Wu, D., Jiang, S., Zhao, J., Lin, H. & Cai, X. 2019. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin Α5 in hepatocellular carcinoma. Cell Death & Disease 10(6): 425. https://doi.org/10.1038/s41419-019-1622-1

Chulpanova, D.S., Gilazieva, Z.E., Kletukhina, S.K., Aimaletdinov, A.M., Garanina, E.E., James, V., Rizvanov, A.A. & Solovyeva, V.V. 2021. Cytochalasin B-induced membrane vesicles from human mesenchymal stem cells  overexpressing IL2 are able to stimulate CD8(+) T-killers to kill human triple negative breast cancer cells. Biology (Basel) 10(2): 141. https://doi.org/10.3390/biology10020141

Ciavarella, S., Caselli, A., Tamma, A.V., Savonarola, A., Loverro, G., Paganelli, R., Tucci, M. & Silvestris, F. 2015. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives  their inhibitory effects on multiple myeloma cell growth and tumor progression. Stem Cells and Development 24(12): 1457-1470. https://doi.org/10.1089/scd.2014.0254

Cortes-Dericks, L. & Galetta, D. 2019. The therapeutic potential of mesenchymal stem cells in lung cancer: Benefits,  risks and challenges. Cellular Oncology (Dordrecht) 42(6): 727-738. https://doi.org/10.1007/s13402-019-00459-7

Crowley, L.C., Marfell, B.J., Scott, A.P. & Waterhouse, N.J. 2016. Quantitation of apoptosis and necrosis by Annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harbor Protocols 2016(11). https://doi.org/10.1101/pdb.prot087288

Deng, X., Zhao, W., Song, L., Ying, W. & Guo, X. 2018. Pro-apoptotic effect of TRAIL-transfected endothelial progenitor cells on glioma cells. Oncology Letters 15(4): 5004-5012. https://doi.org/10.3892/ol.2018.7977

Fazileh Hosseini Shamili, Houshang Rafatpanah Bayegi, Zahra Salmasi, Kayvan Sadri, Mahmoud Mahmoudi, Mahmoudreza Kalantari, Mohammad Ramezani & Khalil Abnous. 2018. Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. International Journal of Pharmaceutics 549(1-2): 218-229. https://doi.org/10.1016/j.ijpharm.2018.07.067

Fulda, S. & Debatin, K-M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34): 4798-4811. https://doi.org/10.1038/sj.onc.1209608

Goers, L., Freemont, P. & Polizzi, K.M. 2014. Co-culture systems and technologies: Taking synthetic biology to the next level. Journal of the Royal Society, Interface 11(96). https://doi.org/10.1098/rsif.2014.0065

Gunaydin, G. 2021. CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and  immune evasion. Frontiers in Oncology 11: 668349. https://doi.org/10.3389/fonc.2021.668349

Hanahan, D. & Weinberg, R.A. 2000. The hallmarks of cancer. Cell 100: 57-70.

Han, H.R., Park, S.A., Ahn, S., Jeun, S-S. & Ryu, C.H. 2019. Evaluation of combination treatment effect with TRAIL-secreting mesenchymal stem cells and compound C against glioblastoma. Anticancer Research 39(12): 6635-6643. https://doi.org/10.21873/anticanres.13878

Han, I., Kwon, B-S., Park, H-K. & Kim, K.S. 2017. Differentiation potential of mesenchymal stem cells is related to their intrinsic mechanical properties. International Neurourology Journal 21(Suppl 1): S24-S31. https://doi.org/10.5213/inj.1734856.428

Ho, C-T., Wu, M-H., Chen, M-J., Lin, S-P., Yen, Y-T. & Hung, S-C. 2021. Combination of mesenchymal stem cell-delivered oncolytic virus with prodrug  activation increases efficacy and safety of colorectal cancer therapy. Biomedicines 9(5): 548. https://doi.org/10.3390/biomedicines9050548

Ho, Y.K., Woo, J.Y., Tu, G.X.E., Deng, L-W. & Too, H-P. 2020. A highly efficient non-viral process for programming mesenchymal stem cells for  gene directed enzyme prodrug cancer therapy. Scientific Reports 10(1): 14257. https://doi.org/10.1038/s41598-020-71224-2

Husniza Hussain, Santhana Raj L., Syahida Ahmad, Mohd. Fuat Abd. Razak, Wan Nazaimoon Wan Mohamud, Jamilah Bakar & Hasanah Mohd. Ghazali. 2019. Determination of cell viability using acridine orange/Propidium iodide dual-spectrofluorometry assay. Cogent Food & Agriculture 5(1): 1582398. https://doi.org/10.1080/23311932.2019.1582398

Jacobs, S.A., Roobrouck, V.D., Verfaillie, C.M. & van Gool, S.W. 2013. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunology and Cell Biology 91(1): 32-39. https://doi.org/10.1038/icb.2012.64

Jang, M., Kim, S.S. & Lee, J. 2013. Cancer cell metabolism: Implications for therapeutic targets. Experimental & Molecular Medicine 45(10): e45. https://doi.org/10.1038/emm.2013.85

Jung, P.Y., Ryu, H., Rhee, K-J., Hwang, S., Lee, C.G., Gwon, S-Y., Kim, J., Kim, J., Yoo, B.S., Baik, S.K., Bae, K.S. & Eom, Y.W. 2019. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and TRAIL and suppress the growth of H460 human lung cancer cells. Cancer Letters 440-441: 202-210. https://doi.org/10.1016/j.canlet.2018.10.017

Kalamegam Gauthaman, Fong Chui Yee, Suganya Cheyyatraivendran, Arijit Biswas, Mahesh Choolani & Ariff Bongso. 2012. Human umbilical cord Wharton’s jelly stem cell (HWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry 113(6): 2027-2039. https://doi.org/10.1002/jcb.24073

Kamal Shaik Fakiruddin, Moon Nian Lim, Norshariza Nordin, Rozita Rosli, Zubaidah Zakaria & Syahril Abdullah. 2019. Targeting of CD133+ cancer stem cells by mesenchymal stem cell expressing TRAIL reveals a prospective role of apoptotic gene regulation in non-small cell lung cancer. Cancers 11(9): 1261. https://doi.org/10.3390/cancers11091261

Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak, K., Tubo, R. & Weinberg, R.A. 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162): 557-563. https://doi.org/10.1038/nature06188

Kazimirsky, G., Jiang, W., Slavin, S., Ziv-Av, A. & Brodie, C. 2016. Mesenchymal stem cells enhance the oncolytic effect of newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Research & Therapy 7: 149. https://doi.org/10.1186/s13287-016-0414-0

Kemp, K.C., Hows, J. & Donaldson, C. 2005. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 46: 1531-1544. https://doi.org/10.1080/10428190500215076

Kern, S., Eichler, H., Stoeve, J., Klüter, H. & Bieback, K. 2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. STEM CELLS 24: 1294-1301. https://doi.org/10.1634/stemcells.2005-0342

Keshavarz, M., Ebrahimzadeh, M.S., Miri, S.M., Dianat-Moghadam, H., Ghorbanhosseini, S.S., Mohebbi, S.R., Keyvani, H. & Ghaemi, A. 2020. Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered  system enhances the therapeutic effects altering tumor microenvironment. Virology Journal 17(1): 64. https://doi.org/10.1186/s12985-020-01326-w

Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B. & Marini, F.C. 2008. The (in) auspicious role of mesenchymal stromal cells in cancer: Be it friend or foe. Cytotherapy 10: 657-667. https://doi.org/10.1080/14653240802486517

Kolluri, K.K., Laurent, G.J. & Janes, S.M. 2013. Mesenchymal stem cells as vectors for lung cancer therapy. Respiration 85(6): 443-451. https://doi.org/10.1159/000351284

Koseki Kimura, Tsunao Kishida, Junko Wakao, Tomoko Tanaka, Mayumi Higashi, Shigehisa Fumino, Shigeyoshi Aoi, Taizo Furukawa, Osam Mazda & Tatsuro Tajiri. 2016. Tumor-homing effect of human mesenchymal stem cells in a TH-MYCN mouse model of  neuroblastoma. Journal of Pediatric Surgery 51(12): 2068-2073. https://doi.org/10.1016/j.jpedsurg.2016.09.041

Praveen Kumar L, Sangeetha Kandoi, Ranjita Misra, Vijayalakshmi S., Rajagopal K. & Rama Shanker Verma. 2019. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic  mode in regenerative medicine. Cytokine & Growth Factor Reviews 46: 1-9. https://doi.org/10.1016/j.cytogfr.2019.04.002

Laing, A.G., Fanelli, G., Ramirez-Valdez, A., Lechler, R.I., Lombardi, G. & Sharpe, P.T. 2019. Mesenchymal stem cells inhibit T-cell function through conserved induction of  cellular stress. PLoS ONE 14(3): e0213170. https://doi.org/10.1371/journal.pone.0213170

Li, L., Tian, H., Chen, Z., Yue, W., Li, S. & Li, W. 2011. Inhibition of lung cancer cell proliferation mediated by human mesenchymal stem  cells. Acta Biochimica et Biophysica Sinica 43(2): 143-148. https://doi.org/10.1093/abbs/gmq118

Li, T., Wan, Y., Su, Z., Li, J., Han, M. & Zhou, C. 2021. Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits colorectal  cancer metastasis by targeting integrin Α6. Digestive Diseases and Sciences 66(6): 1916-1927. https://doi.org/10.1007/s10620-020-06458-1

Li, X., Fan, Q., Peng, X., Yang, S., Wei, S., Liu, J., Yang, L. & Li, H. 2022. Mesenchymal/stromal stem cells: Necessary factors in tumour progression. Cell Death Discovery 8(1): 333. https://doi.org/10.1038/s41420-022-01107-0

Liu, Q-W., Li, J-Y., Zhang, X-C., Liu, Y., Liu, Q-Y., Xiao, L., Zhang, W-J., Wu, H-Y., Deng, K-Y. & Xin, H-B. 2020. Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in  tumour-bearing mice. Journal of Cellular and Molecular Medicine 24(18): 10525-10541. https://doi.org/10.1111/jcmm.15668

Liu, T., Zhu, K., Ke, C., Yang, S., Yang, F., Li, Z. & Zhang, Z. 2017. Mesenchymal stem cells inhibited development of lung cancer induced by chemical carcinogens in a rat model. American Journal of Translational Research 9(6): 2891-2900. https://pubmed.ncbi.nlm.nih.gov/28670377

Liu, X., Hu, J., Sun, S., Li, F., Cao, W., Wang, Y.U., Ma, Z. & Yu, Z. 2015. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Exp. Ther. Med. 9: 1192-1200. https://doi.org/10.3892/etm.2015.2286

Liu, X.,, Hu, J., Li, Y., Cao, W., Wang, Y., Ma, Z. & Li, F. 2018. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model. Oncology Letters 15(5): 6265-6274. https://doi.org/10.3892/ol.2018.8166

Lu, Z., Chang, W., Meng, S., Xu, X., Xie, J., Guo, F., Yang, Y., Qiu, H. & Liu, L. 2019. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine  hepatocyte growth factor to alleviate acute lung injury. Stem Cell Research & Therapy 10(1): 372. https://doi.org/10.1186/s13287-019-1488-2

Mahasa, K.J., de Pillis, L., Ouifki, R., Eladdadi, A., Maini, P., Yoon, A-R. & Yun, C-O. 2020. Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in  enhanced oncolytic virotherapy. Scientific Reports 10: 425. https://doi.org/10.1038/s41598-019-57240-x

Malini Fonseka, Rajesh Ramasamy, Boon Chong Tan & Heng Fong Seow. 2012. Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSC) inhibit the  proliferation of K562 (human erythromyeloblastoid leukaemic cell line). Cell Biology International 36(9): 793-801. https://doi.org/10.1042/CBI20110595

Martin, F.T., Dwyer, R.M., Kelly, J., Khan, S., Murphy, J.M., Curran, C., Miller, N., Hennessy, E., Dockery, P., Barry, F.P., O'Brien, T. & Kerin, M.J. 2010. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: Stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res. Treat. 124: 317-326. https://doi.org/10.1007/s10549-010-0734-1

Meng, Q., Zhang, B., Zhang, Y., Wang, S. & Zhu, X. 2021. Human bone marrow mesenchymal stem cell-derived extracellular vesicles impede the  progression of cervical cancer via the MiR-144-3p/CEP55 pathway. Journal of Cellular and Molecular Medicine 25(4): 1867-1883. https://doi.org/10.1111/jcmm.15573

Nieddu, V., Piredda, R., Bexell, D., Barton, J., Anderson, J., Sebire, N., Kolluri, K., Janes, S.M., Karteris, E. & Sala, A. 2019. Engineered human mesenchymal stem cells for neuroblastoma therapeutics. Oncology Reports 42(1): 35-42. https://doi.org/10.3892/or.2019.7152

Peng, L., Jia, Z., Yin, X., Zhang, X., Liu, Y., Chen, P., Ma, K. & Zhou, C. 2008. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 17: 761-773. https://doi.org/10.1089/scd.2007.0217

Piao, L., Huang, Z., Inoue, A., Kuzuya, M. & Cheng, X.W. 2022. Human umbilical cord-derived mesenchymal stromal cells ameliorate  aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in SAMP10 mice. Stem Cell Research & Therapy 13: 226. https://doi.org/10.1186/s13287-022-02895-z

Pierdomenico, L., Bonsi, L., Calvitti, M., Rondelli, D., Arpinati, M., Chirumbolo, G., Becchetti, E., Marchionni, C., Alviano, F., Fossati, V., Staffolani, N., Franchina, M., Grossi, A. & Bagnara, G.P. 2005. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6): 836-842. https://doi.org/10.1097/01.tp.0000173794.72151.88

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. https://doi.org/10.1126/science.284.5411.143

Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R.C., Ye, L. & Zhang, X. 2008a. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 18: 500-507. http://dx.doi.org/10.1038/cr.2008.40

Qiao, L., Xu, Z-L., Zhao, T-J., Ye, L-H. & Zhang, X-D. 2008b. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Letters 269(1): 67-77. https://doi.org/10.1016/j.canlet.2008.04.032

Ribeiro Franco, P.I., Rodrigues, A.P., de Menezes, L.B. & Pacheco Miguel, M. 2020. Tumor microenvironment components: Allies of cancer progression. Pathology, Research and Practice 216(1): 152729. https://doi.org/10.1016/j.prp.2019.152729

Rodrigues, J., Heinrich, M.A., Moreira Teixeira, L. & Prakash, J. 2021. 3D in vitro model (R)evolution: Unveiling tumor-stroma interactions. Trends in Cancer 7(3): 249-264. https://doi.org/10.1016/j.trecan.2020.10.009

Rossignoli, F., Spano, C., Grisendi, G., Foppiani, E.M., Golinelli, G., Mastrolia, I., Bestagno, M., Candini, O., Petrachi, T., Recchia, A., Miselli, F., Rovesti, G., Orsi, G., Veronesi, E., Medici, G., Petocchi, B., Pinelli, M., Horwitz, E.M., Conte, P. & Dominici, M. 2019. MSC-delivered soluble TRAIL and paclitaxel as novel combinatory treatment for  pancreatic adenocarcinoma. Theranostics 9(2): 436-448. https://doi.org/10.7150/thno.27576

Sai, B., Dai, Y., Fan, S., Wang, F., Wang, L., Li, Z., Tang, J., Wang, L., Zhang, X., Zheng, L., Chen, F., Li, G. & Xiang, J. 2019. Cancer-educated mesenchymal stem cells promote the survival of cancer cells at  primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death & Disease 10(12): 941. https://doi.org/10.1038/s41419-019-2149-1

Sasportas, L.S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J.A.J.M., Mohapatra, G., Figueiredo, J.L., Martuza, R.L., Weissleder, R. & Shah, K. 2009. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences 106(12): 4822-4827. https://doi.org/10.1073/pnas.0806647106

Senthilkumar Kalimuthu, Liya Zhu, Ji Min Oh, Prakash Gangadaran, Ho Won Lee, Se Hwan Baek, Ramya Lakshmi Rajendran, Arunnehru Gopal, Shin Young Jeong, Sang-Woo Lee, Jaetae Lee & Byeong-Cheol Ahn. 2018. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. International Journal of Medical Sciences 15(10): 1051-1061. https://doi.org/10.7150/ijms.25760

Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C. & Moretta, L. 2006. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated  nk cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4): 1484-1490. https://doi.org/10.1182/blood-2005-07-2775

Stagg, J. 2008. Mesenchymal stem cells in cancer. Stem Cell Reviews 4: 119-124. https://doi.org/10.1007/s12015-008-9030-4

Studeny, M., Marini, F.C., Champlin, R.E., Zompetta, C., Fidler, I.J. & Andreeff, M. 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Research 62: 3603-3608. http://cancerres.aacrjournals.org/content/62/13/3603.abstract

Takeshima, H. & Ushijima, T. 2019. Accumulation of genetic and epigenetic alterations in normal cells and cancer  risk. NPJ Precision Oncology 3: 7. https://doi.org/10.1038/s41698-019-0079-0

Wang, X-J., Xiang, B-Y., Ding, Y-H., Chen, L., Zou, H., Mou, X-Z. & Xiang, C. 2017. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget 8(35): 58309-58321. https://doi.org/10.18632/oncotarget.17621

Wahyu Widowati, Harry Murti, Halida Widyastuti, Dian Ratih Laksmitawati, Rizal Rizal, Hanna Sari Widya Kusuma, Sutiman Bambang Sumitro, M Aris Widodo & Indra Bachtiar. 2021. Decreased inhibition of proliferation and induction of apoptosis in breast cancer  cell lines (T47D and MCF7) from treatment with conditioned medium derived from hypoxia-treated Wharton’s jelly MSCs compared with normoxia-treated MSCs. International Journal of Hematology-Oncology and Stem Cell Research 15(2): 77-89. https://doi.org/10.18502/ijhoscr.v15i2.6038

Wu, D-B., Chen, E-Q. & Tang, H. 2018. Stem cell transplantation for the treatment of end-stage liver disease. World Journal of Hepatology 10(12): 907-910. https://doi.org/10.4254/wjh.v10.i12.907

Zahra Salmasi, Maryam Hashemi, Elahe Mahdipour, Hossein Nourani, Khalil Abnous & Mohammad Ramezani. 2020. Mesenchymal stem cells engineered by modified polyethylenimine polymer for targeted  cancer gene therapy, in vitro and in vivo. Biotechnology Progress 36(6): e3025. https://doi.org/10.1002/btpr.3025

Zhang, C., Zhai, W., Xie, Y., Chen, Q., Zhu, W. & Sun, X. 2013. Mesenchymal stem cells derived from breast cancer tissue promote the  proliferation and migration of the MCF-7 cell line in vitro. Oncology Letters 6(6): 1577-1582. https://doi.org/10.3892/ol.2013.1619

Zhang, X., Hu, F., Li, G., Li, G., Yang, X., Liu, L., Zhang, R., Zhang, B. & Feng, Y. 2018. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer  progression through IL-6/JAK2/STAT3 signaling. Cell Death & Disease 9(2): 25. https://doi.org/10.1038/s41419-017-0176-3

Zhou, J., Tan, X., Tan, Y., Li, Q., Ma, J. & Wang, G. 2018. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug  delivery: A comprehensive review. Journal of Cancer 9(17): 3129-3137. https://doi.org/10.7150/jca.25376

Zhu, Y., Sun, Z., Han, Q., Liao, L., Wang, J., Bian, C., Li, J., Yan, X., Liu, Y., Shao, C. & Zhao, R.C. 2009. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting  DKK-1. Leukemia 23(5): 925-933. https://doi.org/10.1038/leu.2008.384

 

*Corresponding author; email: kamal.shaik@moh.gov.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous